
1 INTRODUCTION                                              
The performance assessment of existing buildings is 
particularly important in the process of decision-
making for retrofit, repair and re-occupancy of 
existing buildings. With respect to new construction, 
the seismic assessment of existing buildings is 
characterized by uncertainties in the structural 
modeling parameters. The current European code-
based procedures seem to account for them, by 
dividing the mean material properties by a factor 
larger than unity, known as the confidence factor. 
The confidence factor, which is classified based on 
discrete levels of knowledge about the building, 
seems to create an overall margin of safety in the 
performance assessments without specifically 
addressing the modeling uncertainties. A rigorous 
approach to seismic assessment of existing buildings 
needs to take into consideration all sources of 
uncertainty present in the assessment problem. The 
probabilistic approach to structural assessment 
coupled with the Bayesian updating framework is 
particularly suitable for taking into account in a 
quantifiable manner all the sources of uncertainty 
and all the information available about an existing 
building, ranging from the original design 
documents to the test and inspection results. In a 
fully probabilistic approach, the structural 
performance can be measured by the probability of 
exceeding a specified limit state. There is no general 
closed-form solution available for the probability of 
failure and it is usually calculated using numerical 
integration methods. In this work a semi-
probabilistic safety-checking for the existing 
buildings is proposed. It is demonstrated how the 
parameters of a simplified analytic safety-checking 
format, arranged similar to Load-Resistance Factor 
Design (LRFD), for different knowledge levels 
(KL), can be estimated considering dynamic 

analyses. This format is already adopted in the 
American Department of Energy Guidelines DOE-
1020 and in SAC-FEMA guidelines [FEMA 2000]. 
For seismic assessments based on static analyses, an 
analytical safety-checking formulation is adopted 
which yields the global structural response, 
represented by a structural performance parameter, 
corresponding to a certain confidence. For each KL, 
the outcome of tests and inspections is incorporated 
by employing the Bayesian updating framework. If 
the parameters of these safety-checking formats (for 
static and dynamic analyses) are estimated based on 
different KL’s, building types and outcome of tests, 
these formats would be potentially suitable for code 
implementation.  

1.1 The structural performance parameter and the 

structural reliability 

The structural performance parameter in this 

work is formatted in terms of a critical demand to 

capacity ratio. This parameter which is denoted as Y, 

assumes the value of unity on the onset of the limit 

state LS. In the case of static analyses, the capacity 

spectrum method (CSM) [Fajfar, 1999] is used to 

obtain Y. Moreover, at the onset of the limit state, 

the shear capacity of the structural components is al-

so verified by calculating the shear demand to capac-

ity ratio for the structural components. The overall 

structural performance parameter is finally taken as 

the larger between the critical shear component de-

mand to capacity ratio and the overall demand to ca-

pacity ratio derived from CSM. The structural relia-

bility in the static case is expressed as the probability 

that Y exceeds one ( 1)fP P Y  . 

In the case of dynamic analyses, the cut-sets 

concept in system reliability theory [Ditlevsen and 
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Madsen, 1996] is employed to find the critical com-

ponent demand to capacity ratio that takes the struc-

ture closer to the onset of the limit state LS. This 

critical demand to capacity ratio corresponds to the 

strongest component of the weakest structural failure 

mechanism [Jalayer et al., 2007]: 
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Eq. 1 

Where l is the structural mechanism index con-

sidered and j is the component index within the l
th 

mechanism. In this case the mechanisms considered 

involve the ultimate chord rotation in the compo-

nents, the formation of global mechanisms (e.g., soft 

story and beam mechanisms) and the component 

shear capacity. The structural reliability in the dy-

namic case is represented by the mean annual fre-

quency (MAF) that the performance parameter Y de-

fined in Eq.  exceeds unity (or simply, the MAF of 

failure). Taking the spectral acceleration at the fun-

damental period of the structure as the intensity 

measure, the MAF of failure can be calculated by in-

tegrating fragility and hazard for all values of spec-

tral acceleration [Jalayer et al., 2007]: 
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1.2 A performance-based safety-checking format 

(dynamic  analyses)  

As an alternative to the CF approach in code-

based recommendations, a probabilistic and perfor-

mance-based approach, adopted in the American 

Department of Energy Guidelines DOE-1020 and in 

SAC-FEMA guidelines [Cornell et al., 2002], is 

chosen in this work. This simplified approach leads 

to an analytical and closed-form solution which 

compares the factored demand against factored ca-

pacity. The factored demand and capacity are respec-

tively equal to median demand and capacity multi-

plied by some factors. The magnifying demand 

factors and the de-magnifying capacity factors can 

take into account all sources of uncertainty, such as 

record-to-record (ground motion) variability, struc-

tural modeling uncertainty and the uncertainty in the 

capacities. This approach, that is also known as the 

Demand and Capacity Factor Design (DCFD) [Cor-

nell et al., 2002] for its similarity with LRFD, takes 

into account the overall effect of the various types of 

uncertainties on a global structural performance pa-

rameter. An alternative representation of the DCFD 

format, which is employed in this work, compares 

the factored structural performance parameter Y 

against unity: 

1)(
)(

2

1 2
|

2


 UCaSY

b

k

oY eP


  
Eq. 3 

 

 

Where Po is an acceptable threshold for structural 

failure probability and Y(Po) is the median struc-

tural performance parameter corresponding to the 

acceptable probability Po. k is the slope coefficient 

for linear regression (in the logarithmic space) of 

spectral acceleration hazard versus spectral accelera-

tion and b is the slope coefficient for linear regres-

sion (in the logarithmic space) of the structural per-

formance parameter Y versus spectral acceleration. 

The terms Y|Sa and UC represent the effect of 

ground motion (GM) variability and structural mod-

eling uncertainties, respectively, on the total disper-

sion in the structural performance parameter given 

spectral acceleration; (see Jalayer and Cornell [2009] 

for more details on how to estimate Y(Po) and 

Y|Sa). The inequality in Eq.  can be verified with a 

certain x% confidence: 
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Where 
1

( )x


  is the inverse Gaussian cumulative 

distribution function (CDF) for percentile x. Note 

that in this formulation, in contrast to Eq. , the fac-

tored demand is compared to a less than unity quan-

tity in order to provide a certain level of confidence 

in the assessment, which is suitable for code imple-

mentation. 

1.3 A performance-based safety-checking format 

(static analyses)  

In the static case, safety-checking is performed by 

calculating a given percentile x% of the structural 

performance parameter Y and by verifying whether 

it is less than or equal to unity: 
1 ( )
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Where Y is the median value and Y is the stan-

dard deviation of the logarithm for the structural per-

formance variable Y. As explained before, the per-

centile x reflects a desired level of confidence in the 

structural performance. 

2 METHODOLOGY 

2.1 Characterization of the uncertainties 

It is assumed that the vector  represents all the 

uncertain parameters considered in the problem. This 

work focuses on the uncertainty in the structural 

modeling parameters related to the available infor-



mation on the characteristics of existing buildings. 

This is the type of uncertainty that is believed to be 

addressed implicitly by the application of CF’s. Two 

groups of structural modeling uncertainties are con-

sidered, the uncertainty in the mechanical property 

of materials and the uncertainty in the structural con-

struction details. In particular, the structural con-

struction details can include, stirrup spacing, con-

crete cover, anchorage and splice length; these are 

also known as the defects.  In order to take into ac-

count the uncertainty in the representation of the 

GM, a set of 30 records based on Mediterranean 

events are chosen from European Strong Motion Da-

tabase, 28 recordings, and the database of the Next 

Generation Attenuation of Ground Motions (NGA) 

Project, 2 recordings. They are all main-shock re-

cordings and include only one of the horizontal 

components of the same registration. The soil cate-

gory on which the GMs are recorded is stiff soil (400 

m/s < Vs30 < 700 m/s) which is consistent with the 

Eurocode 8 soil-type B (the soil-type for the site of 

the case-study presented in this work). The earth-

quake events have moment magnitude between 5.3 

and 7.2, and closest distances ranging between 7 km 

and 87 km.  

The parameters identifying the prior prob-

ability distributions for the material mechanical 

properties (concrete strength and the steel yielding 

force) have been based on the values typical of the 

post world-war II construction in Italy [Verderame et 

al. 2001a,b]. Table 1 shows these parameters that are 

used to define the Lognormal probability distribu-

tions for the material properties.  

Table 1. The uncertainties in the material properties (systematic 

per floor). 

Material Type Median COV 

fc L

N 

165 kg/cm2 0.15 

fy L

N 

3200 

kg/cm2 

0.08 

 

The prior probability distributions for the structural 

detailing parameters are defined based on qualitative 

prior information coming from expert judgment or 

based on ignorance in the extreme case [Jalayer et 

al., 2010]. Table 2 shows (for illustrative purpose 

only) the example specifications used to construct 

the prior probability distributions for the structural 

detailing parameters. It shows a list of possible de-

fects, their probability distribution and correlation 

characteristics (arbitrarily set, although they may be 

defined statistically based on practitioner surveys). 

2.2 Updating the probability distributions 

The probability distributions for the structural 

modeling parameters are updated employing the 

Bayesian framework for inference. It is assumed that 

the material properties are homogeneous across each 

floor or construction zone. Therefore, the material 

property value assigned to each floor can be thought 

of as an average of the material property values 

across the floor in question. The results of tests and 

inspections for each floor are used to update the 

probability distribution for the mean material proper-

ty across the floor.  

Table 3. The uncertainties in structural detailing parameters. 

Defects Possibilities Prob. Type 

 

Insufficient an-

chorage 

(Beams) 

sufficient  

(100%effective) 

Absent 

(50% effective) 

Uniform 

[0.50,1] 

 

Systematic 

over floor 

 

Error in diame-

ter 

(Columns) 

 


16  


14 

 

Uniform 

[0.77, 1] 

Systematic 

over floor 

and section 

type 

Superposition 

(Columns) 

100% of the area 

effective  

75% of the area 

effective 

Uniform 

[0.75,1] 

 

Systematic 

over floor 

Errors in con-

figuration   

(columns) 

More plausible 

configuration 

 

Less plausible 

configuration 

Uniform  

[0.75,1] 

[0.67,1] 

Systematic 

over floor 

and section 

type 

Absence of a 

bar (beams) 

Absence of a bar 

Presence of a bar 

Uniform  

[0.70,1] 

[0.69,1] 

[0.60,1] 

Systematic 

over floor 

and section 

type 

Stirrup spacing 

 

Uniform (beams) Uniform 

[15, 30]cm 

Systematic 

Stirrup spacing 

 

Uniform (beams) Uniform 

[20, 35]cm 

Systematic 

spacing of shear  

rebar 

 

Uniform (column) Uniform 

[20, 35]cm 

Systematic 

 

2.3 An efficient method for estimation of reliability 

In this work, an efficient simulation-based Bayes-

ian method is used in order to estimate the structural 

reliability based on a small number simulations 

(around 10-30). This efficient method is described 

herein. 

Suppose that the probability of failure is de-

scribed by an analytical probability distribution with 

parameters ),( YY χ  (e.g., median and standard 

deviation of the Lognormal distribution). If the prob-

ability of failure given the set of parameters is de-

noted by P(F|), the expected value for the probabil-

ity of failure for a given set of data values 

 Nid i :1: d  is expressed as: 
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Eq. 6 

 



where p( |d) is the posterior probability distribu-

tion for the set of parameters  given the data d and 

 is the space of possible values for . Likewise, the 

variance for the probability of failure is calculated 

as: 
22
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Eq. 7 

 

In particular, if the dataset d is expressed in terms 

of a set of Y values calculated for different realiza-

tions of the uncertain parameters within the problem, 

the structural reliability or the probability of failure 

in the case considering structural modeling uncer-

tainties (given the code-specified spectrum) can be 

expressed by a Lognormal complementary cumula-

tive distribution function (CCDF) as following 

={Y , Y}: 

log
( ( ) 1) 1 Y

Y

P Y



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Eq. 8 

 

Where, Φ is the Gaussian CDF, Y is the structural 

performance index and Y and Y are the median and 

the standard deviation (of the logarithm) for the 

probability distribution of the structural performance 

index. Using the Bayesian updating framework, the 

posterior probability distribution for median and 

standard deviation based on data Y is written as [Box 

and Tiao, 1992]: 
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Where Y={Y1, …, Yn } is the vector of n different 

realizations of the structural performance index, k is 

a normalizing constant,  is the gamma function, 

=n-1, Ylog  is the sample mean value for logY and 

s
2
 is sum of the squares of the deviations from the 

sample mean value. The expected value and the 

standard deviation for the probability of failure are 

calculated from Eq. 7 and Eq. 8 based on the poste-

rior probability distribution p(Y, Y|Y) in Eq. 9.  

In the dynamic case, the structural fragility as 

a function of spectral acceleration in the presence of 

modeling uncertainties and uncertainties in the rep-

resentation of the GM can be calculated from the fol-

lowing Lognormal CCDF: 
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Eq. 10 

 

Where Y|Sa is the median for the probability dis-

tribution of the structural performance index and UT 

is the total standard deviation for the probability dis-

tribution of the structural performance index includ-

ing the contribution from record-to-record variability 

and the overall effect of the structural modeling un-

certainties. The terms Y|Sa and UC represent the ef-

fect of the uncertainty in the GM representation and 

the uncertainty in the material properties and the 

structural details, respectively. It should be noted 

that Eq.10 yields the structural fragility; after inte-

grating it with the hazard function for the spectral 

acceleration, the MAF that the structural perform-

ance variable Y exceeds a specific value, or the 

structural risk curve, is obtained. 

Suppose that a selection of n ground motion 

records are used to represent the effect of GM uncer-

tainty on the structural performance index. Let Sa,i 

and Yi represent the spectral acceleration and the per-

formance index for the GM record i, respectively. 

The posterior probability distribution for standard 

deviation is calculated as: 
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Eq.11 

 

The data pairs (Y, Sa) are gathered by calculating 

Y for the set of n GM records applied to the struc-

tural model generated by different realizations of 

material mechanical properties and structural detail-

ing parameters.  is the degrees of freedom and is 

equal to n-2, s
2
 is equal to the sum of the square of 

the residuals for a linear regression of log Y on log Sa 

and a and b are the regression coefficients. The joint 

posterior probability distribution for the coefficients 

of the linear regression = (log a, b) are calculated 

as: 
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Eq. 12 

 

which is a bivariate t-distribution where X is a 2n  
matrix whose first column is a vector of ones and its 
second column is the vector of log Sa,i,  is the 2 1  
vector of regression coefficients log a and b and ω̂  
is the vector (log a, b) of the coefficients of the lin-
ear regression of structural performance parameter Y 
versus Sa in the logarithmic space (due to GM vari-
ability only). The median and the standard deviation 
for the probability distribution for Y|Sa are taken 
equal to the maximum likelihood estimates Y|Sa = 



aSa
b
 and Y|Sa=s, that is, the conditional median 

value for Y is estimated by a power-law function of 
Sa and the conditional standard deviation (of the 
logarithm) of Y given Sa is assumed to be constant. 
The robust estimates for the expected value and the 
standard deviation of the failure probability are ob-
tained from Eq. 6 and Eq. 7 based on the product of 
the posterior probability distributions p(|Y,Sa) and 
p(UT|Y,Sa) in Eq. 11 and Eq. 12, assuming they are 
independent =(UT )= (log a, b,UT). 

2.4 Estimating the parameters of the analytic safe-

ty-checking formats 

This sub-section discusses how the SAC-FEMA 

safety-checking format and the confidence interval 

formulation described in sub-sections 1.3 and 1.4 are 

modified and how their corresponding parameters 

can be estimated using the efficient Bayesian 

method. In the static case, the formulation in Eq.  for 

obtaining the x percentile of the structural perform-

ance parameter is re-written as following: 
1 ( )ˆ 1YxY e 

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Where is a bias factor and Y is the standard de-

viation of the structural fragility curve. Ŷ  represents 

the structural performance parameter calculated for 

the structural model corresponding to the median 

material properties based on the test results and 

nominal values for the structural detailing parame-

ters. The bias factor represents the (usually larger-

than-unity) factor that once multiplied by the nomi-

nal value Ŷ  leads to the median value Y. Compar-

ing with Eq. ,  can be calculated as: 

Y

Y

ˆ


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Eq. 14 

 

Likewise, when the uncertainty in the GM repre-

sentation is considered, the formulation in Eq.  can 

be re-written as: 
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Where is a bias factor and UC represent the 

over-all effect of structural modeling uncertainties. 

Ŷ  represents the structural performance parameter 

calculated based on the median material properties 

obtained from the test results and nominal values for 

the structural detailing parameters. For instance, Ŷ  

can be calculated by performing linear least squares 

as a function of the first-mode spectral acceleration 

based on the set of records. The bias factor 

represents the factor that once multiplied by the 

nominal value Ŷ  leads to the median value Y(Po) 

for the structural performance parameter for an ad-

missible probability value Po: 

Y

PoY

ˆ

)(
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Eq. 16 

 

Where Y(Po) = a Sa(Po)
b
 using the maximum 

likelihood estimates of regression coefficients (log a, 

b) obtained from the probability distribution in Eq. 

12 (i.e., the  =(log a, b) vector that maximizes 

P(|Y,Sa)), Sa(Po) is calculated as the spectral accel-

eration value corresponding to a MAF of exceedance 

equal to Po on the spectral acceleration hazard curve. 

3 NUMERICAL EXAMPLE 

3.1 Structural Model 

As the case-study, an existing school structure lo-

cated in Avellino (Italy) is considered herein. The 

structure is situated in seismic zone II according to 

the former Italian seismic guidelines [OPCM 3431, 

2005]. The structure consists of three stories and a 

semi-embedded story and its foundation lies on soil 

type B. For the structure in question, the original de-

sign notes and graphics have been gathered. The 

building is constructed in the 1960's and it is de-

signed for gravity loads only, as it is frequently en-

countered in the post second world war buildings. It 

is inferred from the original design notes that the 

steel re-bar is of the type Aq42 and the concrete has 

a minimum resistance equal to 165 kg/ cm
2
 (16.18 

N/mm
2
) [R.D.L., 1939]. The finite element model of 

a central frame within the building is constructed as-

suming that the non-linear behavior is concentrated 

in plastic hinges located at the element ends. Each 

beam or column element is modeled by coupling in 

series of an elastic element and two rigid-plastic 

hinges. The rigid-plastic element is defined by its 

moment-rotation relation which is derived by analyz-

ing the reinforced concrete section at the hinge loca-

tion. In this study, the section analysis is based on 

(the widely adopted in current practice) Mander-

Priestly [Mander et al., 1988] constitutive relation-

ship for reinforced concrete, assuming that the con-

crete is not confined, and the reinforcing steel behav-

ior is elastic-perfectly-plastic. The behavior of the 

plastic hinge is characterized by four phases, 

namely: rigid, cracked, post-yielding, and post-peak. 

In addition to flexural deformation, the yielding rota-

tion takes into account also the shear deformation 

and the deformation related to bar-slip based on the 

code recommendations [OPCM 3431, 2005]. More-

over, the shear span used in the calculation of the 

plastic rotation is based on the code formulas. As it 



regards the post-peak behavior, it is assumed that the 

section resistance drops to zero with a post-peak 

negative slope. The structural analyses are performed 

using the Open System for Earthquake Simulation 

(OpenSees, http://opensees.berkeley.edu/index.php/). 

 

 
Figure 1. the central frame extracted for performing the  analy-

ses 

3.2 Estimating the parameters of the performance-

based safety-checking formats using the efficient 

Bayesian method 

The structural fragility curve for the structure un-

der study is calculated by employing the efficient 

Bayesian method described before based on Y for 

static analyses for a set of 20 Monte Carlo (MC) re-

alizations of the structural model. These realizations 

take into account the uncertainties in the material 

properties and the structural defects (as listed in Ta-

bles 1 and 2). The probability distributions for the 

uncertain parameters are updated according to the 

increasing KL defined in the Eurocode 8 (CEN 

2003). For each KL, 20 realizations of the structural 

model are generated from the (updated) probability 

distributions corresponding to the KL’s and based on 

the results of in-situ tests and inspections. Since the 

results of tests and inspections actually available for 

the frame in question did not exactly match the 

Eurocode 8 definition of the KL’s, the test and in-

spection results used herein are simulated based on 

three different simplified hypotheses: (a) 100% of 

the test results verify the design values indicated in 

the original documents (b) 50% of the test results 

verify the design values (c) 0% of the test results. 

The structural fragility for knowledge levels KL1, 

KL2 and KL3 is calculated from Eq. 6 as the ex-

pected value of the structural fragility in Eq. 8, given 

that its median and standard deviation are known, 

where the joint probability distribution for median 

and standard deviation is given in Eq. 9. For each 

KL, the standard deviation in the fragility estimate is 

calculated from Eq. 7 as a measure of the error in the 

estimation of the structural reliability using the effi-

cient Bayesian method. 

The curves of the MAF of exceeding a given 

value of Y (or more concisely, the seismic risk 

curves) for increasing levels of knowledge are calcu-

lated by integrating the structural fragility curves, 

obtained from the efficient Bayesian method, and the 

spectral acceleration hazard curve at the site of the 

structure. For each KL, the fragility is calculated 

from Eq. 6, Eq. 10, Eq. 11 and Eq. 12 using a set of 

30 MC realizations of the structural model. The con-

ditional median Y|Sa and standard deviation of the 

logarithm Y|Sa for the structural performance pa-

rameter Y are estimated by employing the linear least 

squares of natural logarithm of Y as a function of the 

natural logarithm of spectral acceleration at the fun-

damental mode of the structure. The joint probability 

distribution for the linear least squares coefficients 

=(log a, b) is calculated from Eq. 12. The probabil-

ity distribution for the standard deviation of the fra-

gility curve UT (related to Y|Sa and UC  through Eq. 

10) is calculated from Eq. 11 based on the results of 

a small set of 30 MC simulations. The standard de-

viation as it is seen in Eq. 11 can be calculated as the 

square root of the sum of squares of two parts repre-

senting the effect of GM uncertainty denoted by Y|Sa 

and the structural modeling uncertainty denoted by 

UC.The set of MC realizations for each KL are 

generated based on the corresponding (updated) 

probability distributions. The suite of 30 records de-

scribed in sub-section 2.1 are used. The resulting 

seismic risk curves are calculated (based on the three 

hypotheses described regarding the outcome of the 

tests and inspections) for knowledge levels KL0 

(knowledge level before the tests and inspection re-

sults are obtained), KL1, KL2 and KL3. 

The fragility (and risk) curves calculated for the 

static and dynamic case using the efficient Bayesian 

method can be used in order to estimate the parame-

ters of the analytical safety-checking formats dis-

cussed beforehand. For the static case, the bias factor 

 is calculated from Eq. 14 and the standard devia-

tion Y is calculated from the fragility curve obtained 

employing the efficient Bayesian method as half of 

the logarithm of the ratio of the 84
th

 and 16
th

 percen-

tiles. Tables 3 and 5 outline the parameters Y and 

values for the three KL’s considered for the case-

study structure and based on static analyses. The 

three columns represent the three simplified hypoth-

eses adopted previously regarding the outcome of 

the test results. Table 6 outlines these parameters for 

the knowledge level KL0 before the tests are pre-

formed. It is observed that the Y values remains 

http://opensees.berkeley.edu/index.php/


quasi-invariant with respect to the hypotheses re-

garding the outcome of the tests and inspections. 

However, they reduce as the knowledge level in-

creases. For instance, for KL0, Y is close to 15% 

which means that based on the prior distributions 

considered herein, considering the structural model-

ing uncertainties influences the structural reliability 

up to 15%. The values for Y reduce to 5% for KL3. 

The bias factor  remains more-or-less invariant with 

respect to the KL; however, it changes as a function 

of the percentage of the test and inspection results 

that verify the nominal value. For example is ap-

proximately equal to 1.40, 1.20 and 1.0 for percent-

ages verified equal to 100%, 50% and 0%, respec-

tively.  

Table 3. Table of values for UC (uncertainty in the materia 

properties and in the structural details). 

 

The observation that Y depends on the KL 

unlike the bias factor  that remains more-or-less in-

variant, is somehow to be expected. That is, given a 

fixed percentage of the inspections results that verify 

the nominal values, the increase in knowledge level 

(i.e., the increase in the total number of inspections) 

is expected to reduce the dispersion in the structural 

performance parameter Y. On the other hand, the bi-

as factor is expected to depend on the number of in-

spections that verify rather than the total number of 

inspections. 

Table 4. Table of values for UT  (includes the uncertainty in 

the material properties, the uncertainty in the structural details 

and the uncertainty in the ground motion representation). 

 

For the dynamic case, the parameters for the 

safety-checking format in Eq. 15 are also calculated 

by employing the efficient Bayesian method. The 

bias factor  is calculated from Eq. 16. The total 

standard deviation 
2

|
2

aSYUCUT   is calcu-

lated from the fragility curves obtained from the ef-

ficient Bayesian method as half of the logarithm of 

the ratio of the percentiles 84
th

 and 16
th

, respectively. 

The standard deviation Y|Sa is estimated as the 

square root of the mean of the squared residuals of 

the regression of log Y versus log Sa without consid-

ering the structural modeling uncertainties (for the 

structural model constructed based on the median 

value of the test results for material properties and 

the nominal values for construction details). Hence, 

the value for UC is calculated as 

2
|

2

aSYUTUC   . Table 3 and 5 tabulate the  

and UC for different KL’s and test outcomes based 

on non-linear time-history analyses. The same coef-

ficients for the knowledge level KL0 are listed sepa-

rately in Table 6. It is observed that the value for UC 

reduces with increasing the KL; that is, UC is close 

to 18% for KL0 and it reduces to 2% for KL3 (when 

100% of the results verify) and 7% (when 0% of the 

results verify). The bias factor  which is observed to 

be more-or-less invariant with respect to the KL, is 

approximately equal to 1.50, 1.30 and 1.0 for 0%, 

50% and 100% of the test and inspections verifying 

the nominal tests and inspections. Table 4 outlines 

the estimates for UT for the dynamic case for 

knowledge levels KL1, KL2 and KL3 for different 

percentages of the test and inspection results verify-

ing. It is observed that UT decreases a small amount 

(19%-16%) with the increasing KL. The small varia-

tion in UT is attributed to the fact that it includes 

also the dispersion Y|Sa due to record-to-record vari-

ability. Since the value of UC (around 2%-11%, de-

pends on the KL and the percentage of the inspec-

tions verified) is small with respect to Y|Sa (around 

16%, by definition depends neither on the KL nor on 

the percentage of the test results verified), the result-

ing UT values in Table 4 show little sensitivity to 

the KL.   

It is emphasized that the values tabulated herein 

depend, in addition to being case-study specific, on 

the simplifying assumption regarding the outcome of 

the test results and the assumptions regarding the 

prior probability distributions. However, they repre-

sent an example where given the structure, the type 

of analysis and the outcome of the tests and inspec-

tions, the parameters of the safety-checking formats 

are calibrated. With regard to possible code imple-

mentations, similar tables can be obtained by charac-

terizing the representative building types for a given 

location and their period of construction. The tabu-

lated parameters can be potentially used within the 

safety-checking formats discussed in this work, in 

lieu of thorough case-specific assessments, for per-

formance-based assessment of existing buildings. 

  100% 

verified 

50% 

verified 

0% veri-

fied 

S
P

O
 KL1 0.0641 0.0835 0.0586 

KL2 0.0527 0.0616 0.0556 

KL3 0.0531 0.0554 0.0527 

D
Y

N
 KL1 0.0800 0.0868 0.1142 

KL2 0.0393 0.0635 0.0742 

KL3 0.0216 0.0472 0.0682 

  100% 

verified 

50% 

verified 

0% 

verified 

D
Y

N
 KL1 0.1784 0.1816 0.1938 

KL2 0.1643 0.1717 0.1759 

KL3 0.1609 0.1663 0.1735 



Table 5. Table of values for the bias factor . 

Table 6. Table of values for KL0. 

   UC

SPO 
KL

0 
1.5245 0.1455 

DYN 
KL

0 
1.3342 0.1783 

4 CONCLUSIONS 

A semi-probabilistic safety-checking for the exist-

ing buildings is proposed. It is demonstrated how the 

parameters of a simplified analytic safety-checking 

format arranged similar to LRFD for different 

knowledge levels considering dynamic analyses can 

be estimated for a case-study structure.  

In perspective, the probability-based analytical 

safety-checking formats calibrated for the case-study 

building herein, are potentially suitable candidates 

for implementation in the guidelines for existing 

buildings. It should be mentioned that in order to 

make accurate performance assessments, the best 

way to approach would be to carry out case-specific 

assessments based on the outcome of the tests and 

inspections. However, the probability-based analyti-

cal safety-checking formats and their tabulated pa-

rameters can offer significant improvements in the 

assessments with respect to the current CF approach; 

they can serve as a less-than-ideal, approximate solu-

tion with a rigorous basis. 
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  100% 

verified 

50% 

verified 

0% 

veri-

fied 

CF 

S
P

O
 

KL1 0.9933 1.2343 1.4255 1.35 

KL2 0.9782 1.2272 1.4294 1.20 

KL3 0.9701 1.2206 1.4349 1.00 

D
Y

N
 KL1 1.0984 1.3306 1.4698 1.35 

KL2 1.0521 1.3046 1.4812 1.20 

KL3 1.0362 1.2632 1.4953 1.00 


